
RMPP: The Reliable Message Passing Protocol
�

Rolf Riesen
Sandia National Laboratories

Albuquerque, NM 87185-1110
rolf@cs.sandia.gov

Arthur B. Maccabe
University of New Mexico

Albuquerque, NM 87131-1386
maccabe@cs.unm.edu

Abstract

Large-scale clusters built out of commercial components
face similar scalability obstacles as the massively paral-
lel processors (MPP) of the 1980’s. This is especially true
when they are used for scientific computing. Their networks
are the descendants of the MPP networks, but the commu-
nication software in use has been designed for wide-area
networks with client/server applications in mind.

We present a communication protocol which has been
designed specifically for large-scale clusters with a scien-
tific application workload. The protocol takes advantage of
the low error rate and high performance of these networks.
It is adapted to the peculiarities of these MPP-like networks
and the communication characteristics of scientific applica-
tions.

This paper only presents the protocol itself and the ideas
behind it. We refer the reader to other publications for more
information about scalability, performance, and usage of
the protocol presented here.

1. Introduction

The advent of large clusters, based on commercially
available components, has made it possible to carry out
scientific computations much cheaper than using a custom-
built massively parallel processor (MPP). It is tempting to
extend the paradigm and also use standard workstation and
PC-class software. While this may work for smaller clus-
ters, a cluster with thousands of nodes requires a more
thought-out approach to be scalable. This is especially true
for its network and its communication protocols.

In this paper we describe a scalable protocol which is
currently employed in CplantTM [4]. The largest CplantTM

currently in existence has a size of about 1800 nodes. There
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are several reasons we decided not to use a standard proto-
col such as TCP/IP for CplantTM.

The networks employed by CplantTM and other high-
performance clusters are descendents of the networks that
were used in MPPs in the 1980’s. They have different
characteristics and are used differently than wide area net-
works or the world wide web. These networks are not com-
pletely error free. But errors occur very infrequently and
are detected by the network hardware. There is no need for
software checksums or error correction codes. The physi-
cal distances are short and the networks achieve very high
speeds. Retransmitting a one megabyte message once in a
great while is acceptable.

The switches in these MPP-like networks are very sim-
ple. Usually messages are source routed and the switch
does not contain any logic to decide which outgoing port
to use. There is hardware flow control and CRC checks, but
no mechanisms to interact with the switches such as ICMP
messages in Ethernet switches. Messages are wormhole
routed which eliminates the need for large buffers inside
the switches. It also means that messages are not dropped
when congestion occurs.

The network interfaces (NIC) of these networks can
DMA data directly to and from user space, are often pro-
grammable, and could issue an interrupt to the host every
few microseconds. It is therefore important to bundle in-
terrupts or avoid them whenever possible. Unfortunately,
these NICs are attached to relatively slow I/O buses and
often have not very much memory available for buffering.
This makes flow control a necessity.

Scientific applications have different communication
characteristics than client/server applications. Communica-
tion occurs in the form of, often long, messages and many
times in all-to-all patterns. Ideally, these messages flow
from user buffers directly into the network and into a user
buffer on the remote node. Avoiding memory to memory
copies is important to keep CPU usage for protocol pro-
cessing low and bandwidth high.

For CplantTM we needed a flexible, scalable, light-weight
protocol which guarantees reliability, but still delivers high-
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performance in the usual, error free, case. It should be pos-
sible to run the protocol on the NIC or on the host side.
The protocol should be message-based and allow delivery
of messages directly into user space.

The following section describes he properties of RMPP,
the Reliable Message Passing Protocol. In Section 3 we
present the specification of RMPP. Section 4 concludes the
paper with improvement suggestions and ideas for future
work.

This paper only presents the protocol itself, the ideas be-
hind it, and why we made certain design decisions. Please
refer to [7, 5] and [8] for quantitative data, comparisons to
other protocols, and how higher level layers can make use
of RMPP.

2. A New Protocol

RMPP is a transport layer protocol originally designed to
packetize and reliably transmit Portals 3.0 messages [2, 3].
It is meant to operate over a high-speed networks with low
latency and high bandwidth, assumes that network errors
are rare, and demands little CPU power.

The low network error rate makes it possible to optimize
RMPP for the general case when no errors occur. RMPP is
willing to pay a high price in the rare cases when it has to re-
cover from a network error. This keeps the protocol and its
implementation simple, and keeps protocol overheads for
acknowledgements and control packets low.

RMPP is message-based which means it concerns itself
with the reliable delivery of whole messages, not individual
packets. For example, only whole messages are acknowl-
edged, not individual packets. RMPP also understands that
the first packet of a message is important to upper layers.
It may contain upper level protocol headers that need to be
processed before the data contained in the message can be
received.

RMPP does not concern itself with congestion avoidance
or control. The two end points of an individual message
are poor locations to make decisions about the global state
of congestion in the network. Furthermore, MPP switches
simply delay packets during periods of congestion; even-
tually they will be delivered. Traditional protocols use
dropped packets as an indicator for congestion, but that
would be a poor metric in an MPP network. Flow control,
on the other hand, is a part of RMPP.

All aspects of RMPP were designed with scalability to
thousands of nodes in mind. For example, flow control must
not lower the achievable cross-section bandwidth, even as
the cluster grows. Also, the addition of more nodes must
not significantly increase the amount of state kept at each
node, or the time it takes to establish and tear down all con-
nections.

Lastly, RMPP was also designed to be simple to under-
stand and implement. This helps in debugging and testing,
and has had the side effect of making RMPP modular such
that portions of it can be off-loaded onto the NIC [8, 5].

2.1. Design Goals

RMPP was designed for CplantTM when we first realized
that Myrinet [1] hardware was not quite as reliable as we
had originally thought. RMPP is message based because it
is supposed to provide a reliable transport layer for Portals
3.0. RMPP is not specific to Myrinet or Portals 3.0, but it
does assume a high performance, MPP-like network with a
very low error rate. RMPP should be easy to implement,
have low CPU overhead and other low resource require-
ments, be compatible with OS and application bypass, and
must scale to thousands of nodes. It can be implemented on
the host side or inside the NIC.

2.2. Characteristics

Because RMPP is designed for networks with a very low
error rate and because it transports messages, it only ac-
knowledges whole messages not individual packets. If data
can be DMAed directly into host memory, then only one in-
terrupt per message is required. If RMPP runs on the NIC
together with the decision portion of the upper layer, then
interrupts can be avoided altogether. The decision where to
put the data is made on the NIC, and RMPP transfers the
data directly into user space.

RMPP retransmits all of the data of a message if any of
it did not arrive intact. This is a huge overhead, but because
errors are rare this cost is paid very infrequently. In the
normal case, the small number of acknowledgement packets
makes RMPP very efficient.

Since the switches should not drop packets when con-
gestion occurs, and because it would be very difficult for
RMPP to learn in a short enough time about the global state
of the system and where the congestion is located, it does
not make sense for RMPP to try to control congestion. On
the other hand, RMPP does provide flow control.

Data has to be staged in NIC memory on its way to and
from host memory and to and from the network. Since the
two sides operate asynchronously and at different speeds,
flow control is necessary. In our current implementation
RMPP runs inside the kernel on the host side. The con-
trol program in the NIC is very simple and uses buffers in
host memory. Therefore, it is RMPP which has to man-
age these buffers. This is especially important for incoming
data. Many nodes sending large messages to the same node
could easily exhaust the available buffers.

When RMPP acknowledges the first packet and grants
the request to send more data, it also passes along how much



data can be sent at this time. This number is based on the
amount of other data currently flowing into that receiver.
Note that this method is scalable, since the amount of data
flowing into a given node is controlled locally by the re-
ceiver. There is no global state or a fixed number of al-
lowances which can become scarce if more nodes are added
to the network.

RMPP uses implicit connection establishment when it
sends the first packet of each message. That packet contains
the first portion of the user data as well as a request to send
more data (if there is any). This approach creates one con-
nection per message in transit. The resource requirements
per node are not going to increase if the systems grows.
This is not the case for systems in which each node creates
a static connection to each other node in the system.

2.3. Implementation Notes

We mentioned above that RMPP keeps state only for the
duration of a message. In addition, there is some state, cor-
responding to two integers per node in the system, that is
persistent and grows linearly with the system.

In order to guarantee message ordering between any two
nodes, RMPP must remember the last message number sent
and received from every other node. RMPP will only ac-
cept a new message with the number it expects next. All
others are rejected and will have to be retransmitted later by
the sender. This algorithm is applied to the first packet of
each message. This guarantees arrival ordering but still al-
lows multiple messages in transit; including short messages
while a longer message is still being transferred.

RMPP is not full-duplex like TCP. However, since con-
nection setup is implicit, nodes can send each other mes-
sages simultaneously. The two data streams will not share a
single connection, but data can flow in both directions nev-
ertheless.

In order to guarantee reliability and keep the protocol as
simple as possible, RMPP has a very clear division of tasks
between the sender and the receiver of a message. The re-
ceive side prevents errors by dropping any packet that is
bad, out of sequence, or disrupts message order. The send
side is responsible for recovery by using timeouts. When
the sender detects that a request for data transfer has not
been granted in a given amount of time, or an acknowledge-
ment is outstanding, it retransmits the request. In most cases
this will result in the whole message being sent again.

This separation of tasks wastes some time and is not very
efficient for recovery of lost data. However, errors are rare
and the network is fast. The waste and inefficiency does not
occur often and will not last long. In return, the protocol
remains simple and efficient in the case when all goes well.

The simplicity of RMPP and its well-structured behav-
ior makes it possible to move portions of the protocol onto

the NIC. For example, once the connection has been estab-
lished, future requests to send more data can be handled by
the NIC. Observing flow control restrictions, the NIC can
grant the sender to transmit more packets instead of inter-
rupting the host to handle this control packet.

3. Specification

We presented justifications for the presence or absence
of features in RMPP in earlier sections of this paper. In this
section we provide a detailed description of RMPP.

Traditionally, a protocol specification includes informa-
tion about the maximum packet length (MTU) and byte or-
dering. We omit that in the specification for RMPP. The
reason is that RMPP is designed as an intra-cluster proto-
col. All nodes within the cluster speak the same version of
the protocol and agree at boot time on these base parame-
ters. For example, in our Myrinet-based CplantTM, the MTU
for RMPP is just below 8192 bytes, the page size of an Al-
pha processor. RMPP over Ethernet on a x86 system uses a
little less than 4096 bytes.

Security, another important aspect of wide area net-
works, is also not addressed by RMPP. RMPP trusts the
packet header information, since it is provided by a trusted
peer layer. The cluster as a whole system needs to be pro-
tected from the outside. The RMPP layer is not directly
accessible from outside the cluster and has not direct route
beyond the cluster network boundaries.

3.1. Header Format

Figure 1 shows the RMPP header format.
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Figure 1. RMPP packet header

The version field is used to make sure both ends of a
connection agree on the syntax and semantics of the proto-
col in use. Packets with non-matching version numbers are
dropped.

The packet type is encoded in the type field. We explain
the various types in the next section.



In order to respond to new message send requests, RMPP
must know where the message is coming from. The srcNID
field is used to identify the sender. RMPP assumes that
each node in the system is assigned a unique number. Typ-
ically the nodes are numbered by the runtime system from
0 1&1&1 2 n 3 1 4 , where n is the number of nodes in the system.
A layer below RMPP is responsible for translating this num-
ber into a valid network address or a route to the correct
destination.

Each message is assigned a unique, system wide, mes-
sage identifier. Each packet that is part of this message, is
marked with the same identifier as well as the same source
node identifier, independent of which direction the packet
is traveling. This identifier is stored in the msgID field and,
together with the srcNID field, is used to locate state infor-
mation on the receive as well as the send side.

The len field contains the length of the whole message
in bytes. The sequence field (seq) is used to verify ordering
of data packets in longer messages. The info1 and info2
fields contain packet type specific information and will be
discussed further in the next section.

Each message between two specific nodes in a pair is
numbered. RMPP uses that number to preserve message
ordering. It is stored in the msgNum field of the header. Sec-
tion 3.8 gives more details about message ordering.

3.2. Packet Types

The current implementation of RMPP uses ten different
packet types. They are listed in Table 1.

Table 1. RMPP packet types

Type Description
RTS 5 data 6 Request to send for long msg
LAST RTS 5 data 6 Request to send for short msg
CTS [n] Clear to send n data pkt
DATA [s] 5 data 6 Data pkt with sequence number
STOP DATA [s] 5 data 6 Data pkt; last of granted block
LAST DATA [s] 5 data 6 Data pkt; last of msg
MSGEND Msg successfully received
MSGDROP No more data wanted; finish
GCH Garbage collection hint
NULL Terminate transfer

An RTS packet is used to start a message which is longer
than one packet size. For messages which fit entirely into
the first packet, a LAST RTS packet is used to send the mes-
sage. Both packet types contain user data, including upper
level protocol headers. In our current implementation, the
RMPP packet header is followed by a 64-byte Portals 3.0
header, and then user data. RMPP does not have any knowl-
edge about the Portals 3.0 header. It simply passes the first
packet to the layer above for processing.

A CTS packet is used to acknowledge the receipt of a
RTS packet and to grant the sender the right to transmit up
to n data packets. The allowance n is stored in the info1
field of the header. The value of n is determined by the
receiver and used to control flow into the receiving node.
It is always n 7 1. If few messages are flowing into the
receiving node simultaneously, n is set to a high value. If
many nodes are sending to this receiver, then n is lowered
to throttle incoming traffic.

Once a CTS packet has been received by the sender, it
will transmit up to n data packets. These packets are of type
DATA and contain a sequence number s which is stored in
the seq field of the header. The info1 field contains n to
allow the receiver to update its outstanding packet count.
The info2 filed is used to enumerate the number of times
the sender has tried to send this message. Usually it is zero.

The last data packet of a block is either STOP DATA, if the
sender has more data but ran out of allowed packets to send,
or LAST DATA if this concludes the message.

When a receiver has received all data of a message,
it sends a MSGEND packet to the sender. If, after an RTS
packet, the upper layers inform RMPP that the message is
not wanted, then RMPP sends a MSGDROP packet to signal
the sender to complete this message without any further data
transmission.

A MSGEND or MSGDROP packet signals the successful re-
ceipt of all the data the receiver wanted to accept. The
sender can now release all buffers and state entries that were
needed for this message. The sender transmits a GCH packet
to the receiver, so the receiver can release its state infor-
mation for this message as well. The GCH packet is only
a hint to do the clean-up early. The receiver will reuse re-
sources allocated to a message after it has sent a MSGEND or
MSGDROP and a sufficiently long time has passed. A few lost
GCH packets do not hamper RMPP. However, GCH is nec-
essary to reclaim unused state space on the receiver side.
Without GCH state space consumption might exceed reason-
able limits on the receive side.

If a MSGEND or MSGDROP is lost, the sender will eventu-
ally resend the first data packet. The receiver will recognize
that the all of the data has already been received and simple
resend the lost MSGEND or MSGDROP.

The NULL packet is used to abort a current message. It
is sent in place of a RTS or RTS LAST retry when a sending
process gets killed or wishes to abort the current transfer.
This is necessary to keep the message numbering between
two nodes synchronized and avoid deadlock [6, p. 92].

3.3. Execution Flow

RMPP treats each message separately. It maintains state
for each message as long as it is being transferred. The
following state diagrams therefore apply to each individ-



ual message. Several messages can be transferred simul-
taneously. The state information kept on the two commu-
nicating nodes must include information about a message’s
progress through the following state machines.

Figure 2 shows the send side state diagram for short mes-
sages. Longer messages are separated out for clarity in the
state diagram in Figure 3. Figure 4 shows the state diagram
for the receive side. It handles short and long receives.
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Figure 2. RMPP state diagram for short sends
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Figure 3. RMPP state diagram for long sends

In all three state diagrams unexpected packets are simply
dropped. Figure 4 does not show the transition from the
done state back to the init state when a GCH packet has
been lost. In our implementation that transition occurs ten
minutes after a MSGEND or MSGDROP has been sent but no
GCH has been received. This timeout is arbitrary. It needs
to be large enough to ensure that any delayed GCH packet
will come in before the timeout, and small enough to avoid
excessive storage use for state data.

Figure 5 gives an example of a short message trans-
fer. The sending node sends an RTS LAST packet. That
packet includes all the user data for this message. The re-
ceiver accepts the data and acknowledges the message with
a MSGEND. The sender can now release any state informa-
tion it had for this message. It sends a GCH packet to let the
receiver know it can discard its state information for this
message as well.

Figure 6 shows an example of a longer message transfer.
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Figure 4. RMPP state diagram for receives
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Figure 5. RMPP timing diagram for short mes-
sages

The sending node sends an RTS packet including some user
data. The receiver acknowledges the RTS with a CTS packet
and allows the sender to transmit n1 data packets. Usually,
the number of packets a receiver grants to a sender remains
the same for each CTS packet. In our current implementa-
tion that parameter is set to 16. However, if a receiver sud-
denly gets bombarded with message requests, subsequent
CTS packets might have different values for n.

When the sender receives the first CTS packet, it sends n1
data packets. The numbers in square brackets indicate the
sequence number used. The last data packet in this block is
of type STOP DATA. This tells the receiver that the number
of allowed data packets has been exhausted and another CTS
is necessary to continue the transfer.

The receiver sends the second CTS and allows the sender
to transmit n2 data packets. The sequence numbers for this
block of data packets starts at n1 Å 1 and ends at n1 Å n2.
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Figure 6. RMPP timing diagram for long mes-
sages

Again, the last packet in the block is of type STOP DATA
to indicate to the receiver that another CTS is necessary to
proceed.

The receiver sends the third and final CTS packet, grant-
ing the sender n3 data packets. The sender has only enough
data left to fill three data packets. They are assigned se-
quence number n1 Å n2 Å 1 through n1 Å n2 Å 3. The last
data packet is of type LAST DATA indicating to the receiver
that the sender has sent all data. The receiver acknowledges
the receipt of all data using a MSGEND packet. The sender
sends a GCH packet to inform the receiver that it can now
clean-up any remaining state information for this particular
message.

3.4. Connection Management

RMPP connections do not have to be established before
data can be sent. RMPP creates a connection for each mes-
sage implicitly with the first packet (the RTS or RTS LAST)
that is sent. The connection is confirmed by the receiver
with a CTS or a MSGEND (or a MSGDROP) for short messages.
The final MSGEND or MSGDROP closes the implicit connec-
tion.

Therefore, connections are very short lived. While a con-
nection is active, both sides need to maintain some state, but
each node only keeps state about currently ongoing mes-
sages. After both sides agree that a message has been suc-
cessfully transmitted, all state associated with that message
disappears.

In our implementation, each message is assigned a
system-wide unique message identifier. Every packet that
is sent on behalf of that message carries that identifier in
the msgID field of the packet header. The message identi-
fier is generated by the sending node just before a RTS or
RTS LAST packet is sent and is a local count which gets
incremented for each message. Together with the srcNID
field, this uniquely identifies each packet in the system.

We use the message and the source node identifier to lo-
cate state information which is stored in lists. We main-
tain three lists. State information for a message goes into
the send pending queue when the first RTS or RTS LAST
packet has been sent. Upon receipt of a CTS packet for that
message, the queue entry gets moved to the sending queue
(or removed if a MSGEND or MSGDROP is received.) On the re-
ceive side a new entry in the receiving queue gets created
when a RTS or RTS LAST arrives.

3.5. Reliability

RMPP’s reliability is based on messages. Only whole
messages are acknowledged, not individual packets. RMPP
assumes that errors are rare and sending unnecessary ac-
knowledgments for individual packets is more wasteful than
re-sending a whole message once in a great while.

The sending node of a message is the active partner in er-
ror recovery. It sets up a timer and monitors progress of the
packet exchange. If a receiver’s reply has not been received
when the timer expires, the appropriate packet is re-sent by
the sender. If no MSGEND or MSGDROP has been received af-
ter sending an RTS LAST or RTS when the timer expires, the
RTS (or RTS LAST) is re-sent. Once the sender has received
the first CTS and the timer expires because no further CTS,
MSGEND, or MSGDROP packets have been received, the se-
quence number is reset to 1 and one packet full of data is
sent again.

The receiver is passive through error recovery. When it
notices that the sender has restarted a message, because the



sequence number has been reset back to 1, it synchronizes
its own sequence number and starts receiving and acknowl-
edging data packets again. The receiver does this by send-
ing a CTS and allowing the sender to transmit multiple data
packets again. In all other cases when it receives a packet
that is out of sequence it simply drops it. The sender will
eventually time out and restart the message.

This logic has a very high cost to recover lost or cor-
rupted packets. However, it keeps the code, especially on
the receive side, very simple. If recoveries occur infre-
quently, the lost time is not a factor.

In order to accomplish data integrity, RMPP relies on the
layer below it to discard packets that have been corrupted.
In our implementation the Myrinet NICs have built-in CRC
checking. The control program running on the NIC flags
packets which have a bad CRC. These packets will not be
delivered to the RMPP layer.

Periodically, RMPP checks if there are pending sends
which have not progressed in a long while. For each desti-
nation for which it finds an RTS or RTS LAST it resends the
oldest message; i.e. the message with the lowest message
number.

3.6. Interface to Upper Layers

When RMPP receives an RTS or RTS LAST packet it
passes a pointer to the packet to the layer above. That
layer is expected to determine where the data contained in
the message needs to go. In our implementation, the layer
above is the Portals 3.0 module. It could be any message-
based delivery mechanism, though. Portals 3.0 considers
the first 64 bytes of the first packet to be a message header.
Using that, and information submitted to the Portals 3.0
module earlier by the user, it makes a decision where in
user space the data needs to be delivered, and how much of
the total message it is willing to accept.

Note that RMPP itself has no knowledge of the upper-
layer headers. As long as these headers fit into the first
packet, RMPP needs to concern itself only with its own
small packet header.

The upper layer then calls back into the RMPP mod-
ule with destination buffer information such as location and
length. At that time the RMPP module generates a CTS and
lets the sender know how much data of that message should
be sent. The data which was transmitted with the first RTS
packet is then copied into the user buffer.

In the case of a RTS LAST the call-back into the RMPP
module causes the data to be copied (or DMAed in a bet-
ter implementation) into the user buffer. As soon as that is
done, a MSGEND is sent back to the sender.

Figure 7 shows how RMPP ties into the packet mod-
ule and the Portals 3.0 module. In our implementation the
packet module is responsible for interacting with the NIC to

send and receive individual packets. If Portals 3.0 wants to
send a message, it calls the RMPP send function (1). This
causes the RMPP protocol to call into the packet module
(2) to send (and receive) a bunch of packets. When RMPP
receives a MSGEND or MSGDROP packet, it calls lib finalize()
(A).
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Figure 7. RMPP call-back mechanism

When a packet arrives at the packet module, it calls
RMPP’s rcv pkt() function (a). If this is the first packet of
a new message, RMPP makes an up-call (b) into the Por-
tals 3.0 module. The Portals 3.0 module parses the header
of the message and determines where the data needs to be
delivered. It calls back into the RMPP module (c) to let it
know where the data has to be delivered. Once all the data
has been received, RMPP calls into the Portals 3.0 module
one last time (A) to let it know that all the data has arrived.

Although we are talking about RMPP’s relationship with
the Portals 3.0 module, RMPP is independent of Portals
3.0. The upper layer simply needs to provide a function for
RMPP to call when the first packet arrives. The upper layer
must then decide where that data is supposed to go and call
RMPP’s rcv body() function to give it that information.

Notice that RMPP itself does not perform any buffering.
In our implementation, the packet module below RMPP
uses buffers to stage incoming and outgoing packets. RMPP
uses its own flow control mechanism to help manage those
buffers. User data resides in space managed by the layers
above RMPP. In our implementation RMPP copies data to
and from these user buffers into or from the buffers in the
packet module. These copies could be avoided by simply
passing pointers, if the packet module and the control pro-
gram running on the NIC were able to deal with data resid-
ing in user space.

3.7. Flow Control

We have mentioned flow control several times already.
The main mechanism RMPP uses to implement flow con-
trol is to use packet allowances in its CTS packets. Before



a CTS is sent, the receiving node evaluates how many pack-
ets it has currently granted to other incoming streams. It
will grant at least one packet to assure progress for every
message. As the granted data packets come in, the pool
of available allowances increases again and future send re-
quests may receive higher allotments in their CTS.

The code to determine the allowance sent out in a
CTS packet is shown in Figure 8. In the current im-
plementation at least one packet is granted, but never
more than 16 (MAX DATA PKTS). The total pool of al-
lowances (MAX RCV BUF) is set to 2048 in our imple-
mentation, since we have 2048 receive buffers available.
NODES is currently set to 2048, reserving that many re-
ceive buffers for new connections from other nodes. The
variable outstanding keeps track of the total number of
data packets granted but not received yet. These values
seem to be appropriate for our hardware in a 1800 node
system, but need to be adjusted for other systems. If RMPP
were running on the Myrinet card itself, these buffers could
be eliminated, since Myrinet has hardware flow control and
the data can be delivered directly into user space buffers.

n = MAX RCV BUF - NODES - outstanding;
if (n � MAX DATA PKTS)

�

n = MAX DATA PKTS;
else if (n � 1)

�

n = 1;

outstanding += n;

Figure 8. Packets granted in a CTS

This strategy limits the incoming flow of data into a node
when necessary and prevents buffer overflow. The decision
how much data can flow into a node is made locally by the
receiving node and does not affect other flows in the system.
There is no global pool of allowances because that would
limit scalability.

Another flow control problem occurs on the sending
side. If a sending node transmits a lot of request to send
packets to many different nodes, it might happen that all
the receivers grant the sender the full number of allowances.
This might cause the sender to overrun its own send buffers.
For this reason RMPP has an upper limit on how many al-
lowances it will grant in any one CTS messages. The re-
ceiver might have the capacity to receive all that data, but
the sending node might not be able to handle it.

Even so, it is possible for a sending node to overflow its
send buffers. RMPP tries to submit new RTS packets for
transmission as soon as the upper layers request it. If the
transmission layer below RMPP runs out of send buffers,
further send requests by RMPP will fail. In that case RMPP
simply enqueues the RTS (or RTS LAST). When the timeout

timer expires it will attempt to send it again.

3.8. Message Ordering

RMPP guarantees message ordering to the layers above.
It uses the msgNum field in the packet header to do that. It
is also necessary to keep track of the last message number
sent and received about every node RMPP is communicat-
ing with. This is the only state information that persists
beyond the lifetime of a single message. Our current im-
plementation uses two integers in an array for every node in
the system. So, even for an 8000-node system two arrays of
32 kB each are sufficient.

Message ordering can only be guaranteed for messages
transmitted between two given nodes. (Message arrival
from multiple nodes is non-deterministic.) Message order-
ing is based on message arrival, not message completion.
As soon as the RTS of a new message arrives, RMPP informs
the upper layers of that arrival (and receives placement in-
formation for the data of that message). A long message
may not have completed yet when a RTS LAST for a shorter
message arrives. That shorter message may complete before
all the packets of the larger message have been transmitted.
However, arrival ordering remains intact because the arrival
of the first packet of each message, independent of size, is
communicated to the upper level in arrival order.

4. Improvements and Future Work

RMPP evolved out of the need to make message pass-
ing on CplantTM more reliable. After studying the protocol
we have several ideas to improve the protocol and its imple-
mentation.

The MSGDROP packet type is not really necessary. If a re-
ceiver does not want the message, it can send a MSGEND and
abort the message early this way. Similarly, the RTS and
RTS LAST packet types can be combined, since the message
length is part of the header and the number of bytes in the
first packet is known as well (either by the lower layer pass-
ing it along, or the two sides knowing the MTU size in use.)
The msgNUM and msgID fields could be combined.

Another possible improvement is to let the receiver send
NAK packets when it detects errors. For example, a receiver
might notice a dropped data packet because of a jump in
the sequence number. Instead of waiting for the sender to
time out, the receiver could send a NAK packet prompting
the sender to start the retransmission earlier. A selective
NAK would be a variation on this where the receiver requests
the retransmission of specific data packets.

Doing that would complicate the protocol and its imple-
mentation. Our studies indicate that overall performance
would not improve considerably in the network environ-



ment for which RMPP was designed. However, more stud-
ies are necessary to evaluate all aspects of these trade-offs.

5. Conclusions

RMPP is a simple communication protocol which is
scalable to thousands of nodes. It is specifically suitable
for low-error-rate, high-speed networks. This paper only
presents the protocol and the ideas behind it. Performance
and scalability measurements are provided in [7, 5] and [8].
The protocol is very modular and portions of it can be off-
loaded onto a programmable NIC. It is portable and is cur-
rently running over Myrinet and Ethernet.

Work is under way to characterize the modularity in
more detail and explore what portions of a protocol and the
message delivery layer above it should run on the host or
the NIC. We have also identified a few improvements which
will make RMPP even more simple. This helps with new
implementations, testing, and verification.
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